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ABSTRACT

It is been found that an externally injected signal can strongly influence the steady-state

electromagnetic mode in which a pulsed electron cyclotron maser (ECM) operates. A careful

experimental examination reveals that the process by which this occurs is similar to the oscillator

phase priming noted previously in magnetron work. It is found here that the degree of mode control

depends on the injected signal power level (relative to the ECM noise power level), frequency, and time

of aplication. Mode control is obtained at power levels nearly four orders of magnitude below that of

the steady-state ECM output power and over frequency bandwidths several times that of the cavity

resonance band. The optimum input signal is a circularly polarized wave, co-rotating with the electron

cyclotron motion. The experimental results are compared with a quasilinear coupled-mode theory. The

theory is used to provide analytic predictions of the temporal mode evolution through third order

coupling. The comparison with experiment indicates that higher order terms are non-negligible in some

regimes of operation. However, this model suitably predicts ECM steady state operation over much of

the operating parameter space and gives a qualitative understanding of the role of the external signal

and pre-oscillation noise in the mode selection process. Mode priming may enable stable and efficient

single-mode operation of the ECM and other overmoded sources of coherent radiation.
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I. INTRODUCTION

It has been previously demonstrated that pure, single-mode operation can be achieved in a

overmoded rf oscillator (electron cyclotron maser) via injection of an external signal. 1 The observed

phenomenon showed qualitative agreement with a simple theory based on Lamb's quasi-linear

treatment 2 of the multimode problem in lasers. Here we present more detailed experimental evidence

of this effect and make a quantitative comparison with the quasi-linear theory appropriate for the

electron cyclotron maser (ECM). 3

I Sources of coherent radiation typically suffer from competition between different spatial

electromagnetic modes when the operating frequency becomes high enough that the corresponding free

space wavelength is small compared to the characteristic source dimensions. This competition has a

variety of deleterious effects but primary among them are losses in source efficiency, spectral

degradation of the output radiation, and perhaps undesirable thermal loading or electrical breakdown

I in the source components. Consequently a variety of techniques have been developed to either prevent

the excitation or provide suppression of unwanted electromagnetic modes. Interferometric methods

involving a modified cavity structure have been used in lasers and similar slotted or complex cavities

have been used to stabilize lower frequency rf oscillators. Another common technique at all frequencies

is the introduction of selective loss into the cavity to resistively damp unwanted modes. These

techniques, though successful in some limited cases, have the common problem of being rather

inflexible, difficult designs which often are only successful over a narrow region of operating

parameters. In addition, pure single-mode operation at the optimum efficiency predicted by single-

mode theory is rarely, if ever, achieved.

On the other hand, it has been known for some time that the steady state conditions of a

nonlinear oscillator can strongly depend on the initial conditions (pre-oscillation conditions). The work

on oscillator phase control in magnetrons by David 4 clearly demonstrated this phenomenon in the field

I of coherent radiation sources. David showed that by applying a small external rf signal during the

I early stages of oscillation build-up, the final relative phase between the magnetron and external source

I
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could be controlled. The degree to which control was maintained depended on the relative size of the

external signal to the magnetron pre-oscillation noise level. The steady state magnetron frequency was

unaffected by the external source, and hence no phase locking occurred (evidently the external power

level was orders of magnitude below that required for phase locking at any given frequency separation

between the magnetron and the external source). This effect was termed phase priming in an obvious

analogy to the priming of a pump. More recent experiments have verified David's results in the

I magnetron5 , 6 nd the cO. 7

The identifying features of a priming phenomenon, as defined by this early magnetron work,

are as follows: (1) the external signal has an observable effect on the steady state oscillation; (2) the

external signal only has this effect if it is applied in the early stages of oscillation growth (the

oscillator ignores the tiny external signal during the steady state, and hence there is no change in the

operating frequency or output power); (3) the effect is one of degree (as opposed to the definite

threshold associated with the onset of phase locking); (4) the degree of priming depends on (a) the

power level of the external source relative to that of the pre-oscillation noise, (b) the frequency

separation between the external signal and oscillator (this dependence is weak and set largely by the

quality factor of the cavity).

Experiments involving mode selection by an external signal were performed on CO2 TEA and

Nd:YAG lasers.8 ' 9 The phrase injection seeding was coined to describe the priming of modes. Since, as

I will be shown here, this seeding phenomenon matches all four characteristics identified in the earlier

work, one might more aptly use the term mode priming. In addition, it will be shown that the

oscillator phase is, in fact, primed coincidentally with the oscillator mode.

The new results presented here are based on experiments carried out at the Naval Research

Laboratory on a 5 GHz electron cyclotron maser. The electron cyclotron maser mechanism involves the

interaction of a cyclotron wave on an electron beam with a co-propagating transverse electromagnetic

wave. The negative mass instability enables efficient emission of radiation. The experimental

configuration is given in Fig. 1. The interaction region consists of a cylindrical waveguide near cutoff

with a 1.75 cm radius and approximately 10 free space wavelengths in length. Discontinuities

I
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terminate the cavity at the electron gun and collector ends. The electron beam parameters are 20 kV at

I2 A with a measured perpendicular-to-parallel velocity ratio, x, of - 1.4 (with an accuracy of - 20%).

Competition is observed between axial TEliq modes at the fundamental and TE21q modes at the second

harmonic of the cyclotron frequency. Here q is the axial mode index. Capacitively and inductively

coupled probes establish the presence or absence of modes. Because the probes are coupled weakly to

the cavity, internal ohmic losses cause the quality factors of the lowest four axial modes all to be -

I1200. It is clear that there will be significant mode competition if the transit time broadening is larger

than the inter-mode frequency spacing. For axial modes in an ECM the criterion is

4conL

where Con is the frequency of mode n, L is the cavity length, and Pz is the ratio of the axial electron

velocity to the speed of light c. From this relation it can be seen that since the modes become farther

apart in frequency as the axial mode index increases, then the mode competition decreases. On the

other hand, the mode competition increases with Pz, because of transit time broadening, and increases

with con and L because of closer mode spacing. Note that the effect of increased transit time by increase

I of L (hence decreasing the transit time broadening and therefore the degree of mode competition) is

overcome by the effect of L on the mode spacing. In this experiment, the right hand side of the above

expression is - 15, which is much larger than the spacing between the low order modes.

The general philosophy behind these experiments is as follows. The electron beam is

modulated with the priming signal via electron cyclotron resonance absorption. If the beam modulation

I is at a frequency close to that of the desired mode, then that mode will be given an advantage in the

ensuing mode competition which develops as the electron beam excites all modes within the cyclotron

resonance band. There is no a priori justification, however, for expecting such a simple sequence of

events. In particular, the modes may not be strongly coupled or one mode may excite rather than

suppress another. It is these concerns which motivate the development of a valid theoretical model.I
I
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It is found experimentally that mode control can be obtained in a variety of different situations.

When the unperturbed ECMI oscillation skips between two or more modes from pulse to pulse, any of the

modes can be selected by a priming signal at the appropriate frequency. Also oscillation in a single

stable mode can be switched to another nearby mode over a restricted range of operating parameters.

Finally, a case is studi d where a bistable system (two simultaneously oscillating modes) is reduced to

a single mode because of the priming signal. Other experiments show that optimal mode priming occurs

when the input signal is launched as a circularly polarized wave which co-rotates with the electron

cyclotron motion. Using the degree of mode control as a measure of coupling between the electromagnetic

wave and the electron beam it is found that the ratio of coupling factors for the right- and left-

circularly polarized waves is near that predicted from theory. 10

Using symbolic logic manipulation, analytic results are obtained for the linear growth rate and

self- and cross-saturation coefficients for any circular TEmIq mode in the ECM. These complex

coefficients then are used in the rate equations for the temporal evolution of amplitude and phase of

I each mode. This description of the mode evolution is displayed in phase plots (as originally done by

Lamb 2 ) to reveal the basins of attraction of the various stable equilibria. The pre-oscillation noise

and the priming signal can be approximately included in this description as initial conditions from

Iwhich the system evolves. The case considered here is a simple ore: two modes interacting solely

through their amplitudes. It is found experimentally that such a situation does exist for particular

Ivalues of the ECM operating parameters. This experiment is compared quantitatively with the quasi-

i linear theory.

The paper is organized as follows. In Sec. H1 we review the quasi-linear multimode theory. In

this approximation, the rate equations are derived and the coefficients of these equations are

determined analytically up to third order. In Sec. III the experimental evidence is presented for mode

I priming which includes the dependencies on power, frequency, polarization, and time of application of

the input signal. Section IV contains an interpretation of the experimental results and includes a

quantitative comparison between theory and experiment. The conclusions are given in Sec. V.
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I II. QUASI-LINEAR THEORY

I A. Rate equations for the electromagnetic modes

The development of the quasi-linear theory of mode competition is due to Lamb and has been

applied to the ECM by Nusinovich. Here we merely state the assumptions and summarize the

procedure for including the external signal and pre-oscillation noise. The goal is to arrive at equations

revealing the dynamics of the phase and amplitude of the electric field of the various modes. Starting

from a Slater expansion of the cavity fields:11

E = a n(t) e n  , H =,,b n(t) h n ,

I n n

en=VX [fq(z) I(r Z hn= ,Vxe n

an(tj= A (t)e [ n(t)+ + c.c. = +I
a wave equation for kn(t) can be'obtained. Here en and hn are the orthonormal eigenmodes of the

I cavity, fq(z) is the axial profile function (the z axis is directed along the cavity axis, in the direction

I of the electron beam flow), Nfl is the transverse cavity eigenfunction, (on and kn are the frequency and

wavenumber of the free-running (single-mode) oscillator in the nth mode (n is an abbreviation for the

I three indices m, land q). The instantaneous frequency of oscillation is on + +n. The rate equations for

the slowly varying amplitude An(t) and phase 'fn(t) of the electric field of the nth mode can be

I obtained by separately equating the real and imaginary parts of the wave equation for gn(t). In doing

so, it is assumed that An and 'Pn vary little over a period of the field oscillation 2n/0wn. Furthermore,

the good cavity assumption 1/Q o - 1/Qe < < 1 is used where the Ohmic wall loss and external quality

I factors are given by Qo and Qe. If the ac part of the beam current density is also small, then the rate

equations can be writtenI
I
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d-n + I __!_ JRe{(L}) n+ (on Re(X n)=O
dt" 2- ~ An On -2-

dtAn +21-IM(L) + I°nAn 'm {n} =0

dt 2 2 I( )O

Here oo° is the cold cavity resonant frequency of the nth mode and L is defined by

[0+_._ An.i), ei[(Onw (on) t + ' ' - Tn ]

n' [kn,' Qe nl (2)

where Qnn ' and Qn' are the cross-coupling quality factors between modes n and n'. The electronic

susceptibility Xn is defined as

n o n (3)
X n = co An

where Jn(t) is the slowly varying amplitude of the ac electron beam current density:

IJ (rt) = 1 , Jn(t) ei [tn (t)+ 0t] + c.c.] en(r)
2 n (4)

It is interesting to note that the external priming signal can be introduced to the oscillation in two ways.

If the signal is coupled to the electron beam before it enters the oscillator (pre-modulation) then the

current density of Eq. (4) must contain a component which oscillates at the drive frequency.12 This

method of injection has been shown to be preferential for ECM phase locking 13 and phase priming7 since

driver isolation can be maintained, optimal coupling to the electron beam can be achieved, and

amplification of the drive occurs. If the signal is coupled directly to the 'oscillator cavity then a

I modification must be made to the surface integrals in the wave equation. For the purposes of the current

3 discussion, the external signal is included as an initial condition for the rate eq,,ations and is not

I
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consistently incorporated into the equations. This approximation simplifies the resulting analysis and

is justified as long as the external signal is so small that the oscillation rapidly grows to such a size

that it is unaffected by the external signal. Since An i kn > > 2 7t/Od (0d is the priming frequency) then

it is clear that many cycles of the imposed signal will pass before the oscillation will be able to

outgrow the priming signal. For this reason there is a frequency dependence to the priming phenomenon.

The theory discussed here is unable to predict this dependence.

The electronic susceptibility of Eq. (3) depends on the Fourier components of the current density

and hence on the electron dynamics. Thus, to solve for Xn , one must solve the electron equations of

motion which, in turn, depend on the electromagnetic fields. If the electron transit time through the

cavity is very rapid, then the field quantities An and 'n remain approximately constant. In this way

the electron dynamics are adiabatically eliminated from the problem and the electron current density

is written as functions of An and Tn- The current density can be expanded in powers of the small

quantity

e I EorbitI 27 nrL
'mev~

2

where e, me, rL , and vLo are the electronic charge, mass, Larmor radius, and perpendicular (to the

static magnetic field) velocity at the cavity enLrance, respctively. The e!cctUic field m-ignitude on the

electron orbit is denoted by I Eorbit I. The requirement 8 < < 1 implies that the electron loses only a

small fraction of its total perpendicular kinetic energy in a period of its cyclotron motion. This

requirement is typically satisfied for a resonant interaction (such as the ECM) which requires the

electron period to be well defined, thus implying many electron cycles in the interaction region.

The susceptibility can now be written in a power series:

Xn =  1 An ,A, ei[(O- 4)t+To-'PJ]ana+1 AcAvAPeiOvovpneovpn+ (
Cn Y v P



9

where avpn = (COOa- COv + co- P() + T p- Tn

and the summations are over all possible modes. If the frequency separation between modes is much

larger than the mode linewidths, then Eqs. (1) and (2) can be averaged over the fast time scale of the

intermode phase beating. If, in addition, there are no degenerate modes and the modes are unequally

spaced in frequency, then the amplitude equation becomes independent of the mode phases. Expanding

the time-averaged electronic susceptibility to third order using the typical notation for the growth

rate and saturation coefficients:

(On n VoanAn o n (6

where the replacements (na -- (an, Onnnn -) 3n, Onvvn -> t nv have been made. Using Eqs. (6) in

Eqs. (1) there results a sequence of rate equations for the slowly varying amplitudes and phases of the

various modes. For the purpose of comparison with experiment, it is convenient to write these equations

in terms of the power developed .in the cavity rather than the field amplitude:

O w +IRean- OnPn_,nvPv} (7a)
dt2

SPn=m (xn Pn- 3n Pn Pn ynv Pv} .(71)dt
V

The coeffidents in Eqs. (7) are related to those in Eq. (5) as follows:

an_ (+) 0 +3.. ___-_ 1 o 2 o

on n On, n 2 Q- annnn and 'nv= 2n n (8)
0O)n F-o 'k E--
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The 0. in these formulae originate in the transformation from amplitude to power using the definition:

Qo = 0o x (stored cavity energy)/(power dissipated in cavity walls).

B. Evaluation of the rate coefficients

The quantities OXna, 0 nnnn, and 0nvvn are found from the electron equations of motion

considering the electromagnetic fields to be fixed. Nusinovich 3 has shown that the electron equations

of motion, in the slow-time scale formulation, can be written as an iterative sequence of equations for

the perpendicular electron momentum expanded in powers of S. The momentum obtained may then be

used to find J(r,t) in Eq. (4), which in turn yields Jn(t). Using Eq. (3), Xn and each of its expansion

coefficients may be found. Employing the approximation that a Pjo wo L/(2 c) > > 1, the coefficients

for a cylindrical cavity and annular electron beam are

Rn D4 2
Cno = - 2 - ± P.0 Cnreduce

e

2

Snnnn -n 2 n reduce
(On  (9)

2

=R [C MLkMLJM-l(kMLR1]
nwn 2 nvreduce

O~v

Here a is the ratio of initial perpendicular to parallel electron velocity, PLo is the ratio of the

perpendicular electron velocity to the speed of light, and wo is a normalization frequency. The initial

perpendicular momentum is pLo and the electron beam guiding center radius is R,. The eigenfunction for

a circularly polarized TE cavity mode has been written VmI = CmZJm(kmi r) x exp(j, i m 0), where the

perpendicular wavenumber kmi = xmz/rw [rw is the wall radius, xml is the Ith zero of JW(x)] and the
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constant Crn= (Jm(xrni) it (x.,- m2 ) -. Mode "n" again corresponds to the cylindrical indices m,

Z, and q which identify the radial, azimuthal, and axial mode numbers. The indices of mode "V" are

M, L, and 0. The factor Rn is defined

V2 2
Rn_ 10 e3 1_, [Crz kminJ7mz (knRo)]

Po c' I E me V oo n

where 10 is the dc electron beam current. The factors labelled with a "reduce" subscript are those

calculated analytically using the symbolic logic manipulator REDUCE version 3.2.14 The form of the

constants has been given by Nusinovich 3 and these are reproduced in the appendix. These coefficients

depend on the axial electric field profile fq(Z), the detuning factor An = 2 ((on - fl)/(3_Lo ao), and the

normalized length 2 = a P±o (oo z/(2 c). Here the electron cyclotron frequency is denoted by Q. These

factors of Eqs. (Al) are used together with Eqs. (9) in Eqs. (8) to find the net linear growth rate and

coefficients of self- and cross- saturation for the rate equations (7). Note that the axial field profile is

not computed self-consistently in this approximation. A sinusoidal profile is used to model the high

quality factor modes of the experiment:

L L

Figure 2(a) shows the imaginary part of an, which is proportional to the linear growth rate,

for the four lowest order TEl 1 q modes. an is plotted against the static axial magnetic field using

typical experimental parameters (beam current of 2 A, beam voltage 20 kV, a of 1.4). In all

calculations, the beam perpendicular velocity is assumed constant though the static axial magnetic

field is varied. Growth occurs when the imaginary part of an becomes positive. There are q regions of

strong growth for a TE, 1 q mode. Because of the large areas of overlap (where several modes grow

linearly) it can be expected that there will be mode competition in this device. The higher order terms
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must be included to determine which mode survives in the steady state. A comparison of this quasi-

linear theory with experiment is made in Sec. IV.

Figure 2(b) shows the osc.llator frequency shifts due to the real part of an for the four lowest

order moJes. This coefficient modifies the frequency of oscillation of each mode via Eq. (7a). It can be

seen that the frequency separation between modes is on the order of .5 % of the operating frequency.

Though linear theory predicts that the ECM frequency may be either above or below that of the cold

cavity resonance, in this experiment it is found that the resonant frequency is always upshifted from

that of the cold cavity resonance. It has been found that the higher order terms do reduce the

downshifting of the ECM frequency.

C. The oscillator phase space

I Since it has been assumed that the modifications to the oscillator frequency due to the electron

beam are small (On is small), then the power rate equations (7b) evolve independently of those for the

phases (7a). A convenient way to view the solutions to (7b) is to eliminate the time parameter and plot

solutions in the phase space formed by the amplitude (or power) in each mode. This was first done by

Lamb. 2 For the simple case of two modes interacting solely through their amplitudes he found three

I general types of interaction. These he termed strong, weak, and neutral coupling, respectively. Strong

coupling implies that only one mode survives to the steady state. This is the condition most often

observed in the ECM with a closed cavity configuration. Weak or neutral coupling often involves the

3simultaneous oscillation of two or more modes. In a short pulse experiment, it is not always clear

whether two simultaneous modes are weakly coupled, and will survive indefinitely, or strongly

coupled but take a long time to approach the steady state. In such a case one must resort to the

mathematical criterion for strong coupling, which is Y1 2 72 1 > 01 02" A typical phase diagram for two

I strongly coupled modes is shown in Fig. 3. The oscillator follows one of the trajectories shown

depending on its initial conditions. The origin is an unstable equilibrium so that both modes have

positive linear growth. Time increases along each trajectory in the direction of the arrows so that theI
I
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oscillator approaches either one of the two pure mode solutions (P1 = 0, P2 
= Ps or P1 = psatP 2 

= )in

the steady state. There is a separatrix (basin boundary) which separates those trajectories that

approach mode 1 in the steady state from those which approach mode 2. This separatrix plays a

primary role in the mode evolution. Though its equation cannot be found in an analytic form, it does

pass through two known points in the phase plane. One is the origin and the other is the intersection

(henceforth referred to as point I) of the two lines Imtcti - Pi Pi -'Yik Pk }= 0, denoted by the lines A

and B in the figure. As can be seen from Eq. (7b), this point is also an equilibrium point, but it can be

shown to be unstable for strongly coupled modes.

A qualitative understanding of the mode priming phenomenon can be obtained by using the

phase plane representation of the mode evolution. When the oscillator starts up, it can be assumed

that there is a broadband noise radiation field generated predominantly by the electron cyclotron

motion. The cavity resonances tend to filter the noise so that there remains significant noise power only

near the resonance frequency of each mode. Previous studies indicate that this noise is distributed in

amplitude according to a Rayleigh distribution and is randomly phased.7

In the case when there is no external signal present, the initial condition from which the

oscillator evolves is given by the point with phase plane coordinates (p1oise, poise ), where pise is

the noise power level in the ith mode. The oscillation will proceed to a pure mode 2 or mode I

oscillation depending on whether this initial condition is above or below the separatrix. If the mode

i separation is much less than the cyclotron emission band (this is the usually the case because of doppler

broadening) then the noise power in two adjacent modes should be of similar size. Hence the initial

condition is usually near the 450 line in the oscillator phase plane. If the separatrix is also in this

Svicinity then slight fluctuations in pre-oscillation noise may push the initial condition back and forth

across the separatrix from one oscillator pulse to the next. In such a case the oscillator would skip back

and forth between modes from pulse to pulse. On the other hand, if the separatrix is far from the 450

3] line then nearly pure mode operation would result.
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If an external priming signal is applied during the start-up phase of each oscillator pulse, the

initial condition from which the oscillation evolves is modified. If the priming signal frequency is

close to that of mode 1, for example, then the new P1 coordinate of the initial condition is the vector sum

of the noise power in mode 1 and the priming signal power. Since the P2 coordinate of the initial

condition is unchanged and the priming power is arbitrary, the initial condition can be varied over a

wide range of values. In particular, the initial condition can be pushed across the separatrix, thus

i selecting a new steady state mode with only a small amount of priming power (large compared to the

pre-oscillation noise power level).

The equation of the separatrix must be obtained in order to predict the modal evolution. In

practice, since the noise and priming power levels are small compared to the steady state saturated

power level, the initial conditions of interest are always near the origin. Hence it suffices to know the

I separatrix in this small region of the phase plane. It can be shown that the equation obeys the power

law relation

a 2

I P2 = C (Pl)' (10)

near the origin. Here C is an unknown constant which depends on all of the rate equation coefficients. C

may be found by numerically integrating Eq. (7b) backward in time from point I which, as previously

mentioned, must be on the separatrix. Since the right-hand side of Eqs. (7b) vanishes at point I, the

i integration must be started from a nearby point which is also on the separatrix. Such a point can be

i found by linearizing the rate equations (7b) about I. Since I is a saddle point, the equation for the

separatrix is a straight line in this vicinity. The starting point for the numerical integration is then

i chosen to be on this line. A linear regression of the numerical data yields C.

D. Theoretical Missed Pulse Fraction

I
I
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The degree of control over the oscillator modes is measured by determining the fraction of

oscillator pulses not in the desired mode (missed pulse fraction, F). This degree of control can be

analytically determined if the mean noise power and noise power distribution are known. Given these,

the temporal evolution of an arbitrary oscillator pulse is found by randomly selecting a power level

from distributions for the power in each competing mode, then comparing the resulting initial condition

coordinates to those of the separatrix in the phase plane. After repeating this process for a large

I number of pulses, the fraction F can be determined.

-- The following discussion is limited to two competing modes with a priming signal applied to

mode 1, the "desired" mode. The probability density PF of the noise power of an undriven mode (mode

2) follows the modified Rayleigh distribution:

IPF(PNdP2==e N P
NI

where N is the mean noise power in the mode (N is experimentally determined). The driven mode

I follows the distribution PD:

1 (P, _2=- PD(P1) dPIjleN I0 ° -- dpU ~N tO21~~

i where D is the drive signal power and Io is a modified Bessel function.1 5 The oscillator will operate in

the undesired mode if the initial condition in the phase plane is on the wrong side of the separatrix.

3 For the typical situation shown in Fig. 3, the criterion for a missed pulse is

S (P2)

P1 <S(P2) or Z> 1 ,
P1

3 where P1 = S (P2) is the equation of the separatrix. To find the probability of a missed pulse one needs

i the probability of Z > 1. It can be shown that the probability density of Z is

I
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Pz( dZ = '-- O P.(XW[1 - e )]dx dZ

where x = 1/P 1 , Px is the probability density of x,

1 -(+D)I(,,/id

3 (x)dx=- x e JNj i dxz Nx

and S -1 is the inverse of S [ i.e., the equation of the separatrix is P2 = S 1 (P1 ) 1. The missed pulse

fraction is the probability of Z > 1:

F= Pz(ZdZ= 1- Px(X) 1 -e N ]dx (11)

I
I~- s~Q) cC7

2 /a (12)

IIII. EXPERIMENTAL RESULTS

HA. Mode priming the ECM

The priming experiments involve the injection of an external signal through one or more of the

3coupling probes (Fig. 1) into the ECM cavity. A stable sweep oscillator generates the signal and

I
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attenuators and phase shifter circuits are used to launch waves of different circular polarization. The

I output from the ECM generally couples to all probes which are terminated in matched loads. The

output is monitored on probes LI and L2 to detect even order axial modes (electric field null at cavity

midplane) and probes #3 and #4 to detect odd order modes. The mode of operation is determined from

(a) frequency measurements using a tunable bandpass filter in the ECM output line, and (b) measurement

of the spatial field profile using the various probes along the cavity axis. More than 40 dB of isolation

I is used to prevent output power from the ECM from reaching the sweep generator. To further ensure that

the priming source is unaffected, a large drive power is used together with directional couplers and

attenuators to lower the priming signal to the needed size. In this way the feedback power from the

ECM is small compared to the power level at which the priming source operates.

Mode control is experimentally shown to be possible under a variety of circumstances. These

include (i) switching from a single steady mode, (ii) selecting between two simultaneously oscillating

modes, and (iii) selecting between modes which skip back and forth from pulse to pulse. An example of

case iii is given in Fig. 4. The oscilloscope traces show the signal from a crystal detector monitoring the

output power of the ECM with beam current of .77 A and magnetic field -1.87 kG. (This experiment was

carried out on a cavity with fewer probes and a different electron gun than previously described.)

When no priming signal is applied the ECM skips between the TEl 1r (at 5.093 GHz) and TE113 (at 5.141

GHz) modes from pulse to pulse. Throughout a given pulse there is no change in mode. The exposure

1 time of the photograph is - 2 seconds which corresponds to over 100 pulses. Thus both modes appear in

3 the picture at the same time. Application of a small priming signal at either the frequency of the TE111

or TE1 13 mode allows selection of the respective mode. This is confirmed by frequency measurements

I using the tunable filter. Figure 4(d) shows the-relative phase between the TE 11I oscillation and that of

the priming signal (priming frequency near 5.093 GHz). It can be seen that the ECM initially starts up

I in phase with the priming signal but soon wanders off because of the slight frequency difference. Thus

I the ECM is phase primed at the same time that it is mode primed. There is no phase locking since the

priming power is so small compared to the ECM output power. This example demonstrates two features

I
I
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of a priming phenomenon: the external signal has an effect on the steady state oscillation but doesn't

change the oscillation frequency or power level.

The temporal dependence of the mode priming phenomenon is shown in Fig. 5. Here the

external signal power and ECM output power are simultaneously monitored. In the free-running case

(Fig. 5(a)) the ECM skips between the TE11 1 and TE113 modes from pulse to pulse. Both modes are

apparent in each picture since the digitizing oscilloscope uses interleaved sampling (samples from

I multiple pulses). The definition of the trace of a given mode is a qualitative measure of the fraction of

oscillator pulses in that mode. Hence in the free-running case most of the ECM pulses are in the TE113

mode because that trace is brighter. A 50 ns wide priming pulse is applied to the ECM about 350 ns

before oscillator saturation in Fig. 5 (b). The priming frequency is that of the TE111 mode. The priming

signal slightly increases the fraction of pulses in the TE11 1 mode since the lower trace becomes brighter,

relative to Fig. 5(a), and the upper trace darkens. Moving the priming pulse about 50 ns later in the

oscillation buildup has the dramatic effect shown in Fig. 5(c). Now virtually all ECM pulses are in the

TE111 mode. Moving the priming pulse another 100 ns closer to the ECM saturation show that its effect

weakens (Fig. 5(d)). Thus there is an optimal time at which the external signal should be applied to

obtain optimal mode control. If the priming pulse is too early in time, it will decay before the ECM

3 oscillation is initiated. Too late in the buildup and the ECM power is large enough to ignore the

priming signal. This temporal dependence of mode control is further evidence that the phenomenon is

one of priming. This feature might be exploited when priming a high power oscillator by isolating the

priming source from the oscillator during the high power part of the oscillator pulse.

A global picture of mode selection for the TEll1 mode is shown in Fig. 6. Here the regime of pure

TEn mode operation in both the free-running and primed cases are indicated on a plane formed by the

operating parameters beam current and axial magnetic field( I-B plane). In the free-running case a

I complicated pattern of pure modes exists separated by regions of pulse-to-pulse mode skipping.

Application of the priming signal allows pure mode operation if the priming frequency is sufficiently

close to one of the modes. It can be seen from Fig. 6 that the regime over which a pure TEl 11 mode can be

3 obtained increases by about 40 % when a priming signal is applied. The maximum priming signal power

I
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used was less than 20 W (outside the cavity). The regime of primed TE1 1 1 operation is found to

displace free-running regimes of stable TE1 1 2 , TE1l 4 , TEll 8, and TEll9 operation and pulse-to-pulse

mode skipping regimes involving these and other modes. Other experiments show that the regime of

pure mode operation of each of the higher order axial modes can be enhanced by a priming signal of the

appropriate frequency. This priming frequency is very close to the frequency the mode would have, for

the given beam current and magnetic field, if it could oscillate alone. In addition, an experiment at the

second harmonic of the cyclotron frequency, using TE2 1 q modes at - 8.5 GHz, reveals that the same

degree of mode control can be obtained.

From these results it is clear that control can be obtained over the steady state mode at the

boundary between the excitation of any two modes in the I-B plane. This result is significant since it is

a common feature of the ECM that the regime of maximum predicted efficiency is near the boundary of

excitation of competing modes. It is to be emphasized that single-mode operation does not imply that

there is no mode competition. Single-mode operation simply means that the mode coupling only allows

a single mode in the steady state. Whether or not that mode can be obtained at optimal efficiency is an

issue in which mode competition plays a crucial role. Often single-mode theory predicts a maximal

efficiency of a particular mode at a point in the I-B plane where a competing mode is experimentally

found. This type of single-mode operation is undesirable. Mode priming may be a means of obtaining

the desired mode in such a situation. In addition, it has been noted that the highest efficiency regime

for the ECM often occurs for beam currents below the start oscillation current. It has been shown

previously that this hard excitation regime is accessible via a priming signal. 1 2

Figure 7 shows the minimum drive power required to achieve pure mode operation as a function

of priming frequency. Here pure mode operation is defined to mean that greater than 99.95 % of all

ECM output pulses are in the desired mode. A magnetic field near 1.84 kG and a 22 kV, .55 A beam yield

a steady TE1 1 3 mode oscillation. The priming signal is at a frequency near that of the TElI1 mode

(5.074 GHz). The experimental points in Fig. 7 generally fall along an inverted Gaussian. There is a

slight asymmetry between high priming frequencies (Aw > 10 MHz, where A0 n difference between

priming and TEl 11 frequencies ) and low priming frequencies Aw < 10 MHz. The frequency dependence is

I
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not Lorentzian, as would be expected from the cavity resonance profile. It is clear that the change in

mode control with drive frequency is not simply due to the finite resonance width of the cavity. The

priming power required for a given level of mode control is found to increase exponentially with Ao.

Another unusual feature of Fig. 7 is that the frequency at which the least priming power is required for

pure mode operation is not the same as the TE11I frequency. In this experiment and in all other cases

studied (including experiments at the second cyclotron harmonic), better mode control is obtained with

a priming signal of frequency slightly above that of the free-running oscillation. This same feature is

present whether the competing mode frequency is above or below that of the primed mode. The

explanation may be that the oscillation frequency during the build-up is not the same as that during

jthe steady-state (which is the measured frequency). However, the theoretical model presented here

aiiows for no oscillator dynamics due to the priming signal so this unusual feature must be explained

using a more detailed description of the build-up scenario. From Fig. 7 it is seen that, when priming at

the optimal frequency, the necessary priming power (measured outside the cavity) for pure mode

oscillation is nearly three orders of magnitude below the output oscillator power in the TE 11I mode.

When the probe coupling is taken into account, the priming power is nearly four orders of magnitude

below the oscillator power inside of the cavity. The bandwidth over which mode control can be

maintained is several times the cavity resonance width.

Using a linearly uptapered axial magnetic field it is possible to excite two simultaneously

oscillating modes. This is because the cyclotron resonance condition varies along the length of the

device. A low frequency mode oscillates near the electron gun (upstream) while a high frequency mode

grows in the downstream region. The faster growing mode is downstream of the slower growing one. In

this way the downstream mode grows to a large size before encountering any adverse electron beam

modulation due to the upstream mode. These modes are still strongly coupled but, since they interact

with different parts of the electron beam, the time taken to reach equilibrium is much longer than the

pulse length. It is possible to eliminate the faster growing mode entirely by priming the upstream

mode. Priming the downstream mode has no effect on the mode evolution. Reversing the direction of

I
I
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the magnetic field taper causes the faster growing mode to be the upstream mode and thereby

elimiinates the slower growing mode entirely.

B. Coupling of the priming signal to the electron beam

The degree of mode control obtained by priming is expected to be related to, among other things,

the degree of coupling of the input electromagnetic wave to the electron beam. Thus the degree of mode

I control can be used as an indirect measure of the nature of the electromagnetic wave which participates

in the electron cyclotron maser mechanism. Here we show that optimal mode control, for our cavity,

occurs when the input wave is launched with circular polarization, co-rotating with the electron

I cyclotron motion.

The theoretical expression for the perturbation in electron motion by a TE wave contains terms

2I proportional to (.; (o - kz vz - n Q)-2. Here kz is the axial wavenumber, vz the axial electron velocity and

n the cyclotron harmonic number. The largest deviations in electron position are produced by these

terms when ; o - kz vz - n 0 0. Obviously the plus sign in front of c) must be chosen for this

synchronism condition to be satisfied. This means that the electromagnetic wave rotates in the same

direction as the beam cyclotron wave. The electrons thus feel virtually static fields in thE co-rotating

frame of reference. The experimental objective here is to show that regardless of now the

electromagnetic wave is polarized, upon injection into the ECM, it is the co-rotating component of the

wave which predominantly couples to the electron beam. Because the axial magnetic field is directed

opposite to the electron flow, the best coupling is expected to occur via a left-hand circularly polarized

electromagnetic wave.

Injecting a signal (at the cyclotron fundamental frequency) into the ECM through a single

capacitively coupled probe excites a standing TE1 1 wave. The structure of this field in the cylindrical

I cavity is given by

I a dJ1(kir

E= E~ -Jl(kr) sin r + dkir cos ) e O t  (13)

I
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Here the dependence on axial coordinate is suppressed for compactness of presentation. The polar

coordinates are r and (0 and the probe is located at 4 = 900 (see Fig. 8(a)). Using the abbreviations
I

1 dJl (kjr)

A=-r Jl(klr) and B = dkir

the linearly polarized wave in (13) can be written in terms of circularly polarized waves: 16

E !ei(t+ ¢ + /2) + -ej(Wt-O+X/2) A + e j( ct0 t+O) + - ei('~t ) $ (14)

I
Here the right-hand (left-hand) component has a negative (positive) sign in the exponential. The

time averaged power in the left-hand circularly polarized (LHCP) component of the wave travelling

I along with the electron beam is (using the orthogonality of the right- and left- hand circularly

polarized waves)!2
E(LH) 2 kz J (A 2 + B 2 ) r d o d r = -  (15)

where the integration is over the cavity cross-section. It can easily be shown that the power into the

right-hand (RHCP) component is identical to that of Eq. (15). Thus half of the probe input power, PIN,

goes to the left-hand wave as is expected since the total wave is linearly polarized.

The configuration of the two probe excitation is shown in Fig. 8(b). The probes are spatially

I separated by 900 in azimuthal coordinate and are excited with amplitudes E1 and E2 and with a phase

difference 0. The total drive power into the ECM is P1 + P2 = PIN. The total field in the input wave is

the sum of Eq. (13) (with E = E1 eJ0), and

I E2 = E2 (A coso r- B sino $) e (Ot (16)

I
1
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the field excited by the second probe. Writing Eq. (16) in terms of circularly polarized waves, adding it

to Eq. (14), and finding the time averaged power into the right- and left-hand waves as before

12kz [E 1
2 +E 2

2 +2EE 2 sine] J (A' + B2)r do dr (17)
s

where the upper (lower) sign is taken for the power into the left- (right-) hand circularly polarized

wave. For the special case of E1 leading E2 by 900 (0 = 900) the power into the left hand wave in

Eq. (17) is

1
(PLH) = 2 PIN + " P1 P2 (18)

Further specializing to equal amplitudes injected into the two probes: (PLH) = PIN, and all of the input

power couples to the LHCP electromagnetic wave. As long as the probe diameter is a small fraction of

the cavity circumference a pure circularly or linearly polarized wave may be excited. In the

experiment, cold test results indicate that the assumption that a single probe excites a pure linearly

polarized wave is justified. More than 80 % of the input power was injected into the linearly polarized

component.

The degree of control of the modes in the ECM is measured by monitoring the signal from a

crystal diode monitoring ECM output power. The ECM is tuned to a parameter region where a single

stable mode oscillates in the free-running case. The input priming signal frequency is equal to that of a

competing mode. As the drive power couples to the electron beam the ECM begins to mode skip into the

driven mode. The input power level is adjusted so that even when the drive power couples optimally to

the beam the ECM continues to mode skip to some degree. Two methods of data collection are used.

First a simple averaging scheme is used which discriminates the fraction of missed pulses (those not in

the primed mode) on the basis of a large difference in amplitude between the primed and free-running
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modes. The other method involves actually acquiring a large number of pulses (- 1000) on a digital

oscilloscope and counting the missed pulses using a computer.

The averaging method uses N ECM pulses (N _ 256). A certain fraction of these pulses, p, will

have a level 11 corresponding to the free-running mode. The remaining fraction of the pulses, (1- p),

will have the level 12 of the driven mode. A digitizing oscilloscope provides the average A:

= pN(11 + Ai) + (1-p)N + AI2 i) (19)

I Di2 i1)

where random pulse-to-pulse fluctuations in oscillation amplitude, Ali, are included. Equation (19) canI~ i

I be rewritten

pN (1-p)N

A = J Ai+ ' AN2i + pI + (1-p)I 2  (20)i i=1 i=1

The first two terms in Eq. (20) are assumed to vanish. Though the fluctuations Al 1 and A12 are random

Al
from pulse to pulse, their average cannot be neglected unless T 1 I and a large number of pulses are

included in the average. Though the first condition holds in the experiment the second does not hold in

the limits where there is very little control over the free mode or the mode is almost completely

controlled. The experimental errors are expected to be correspondingly larger in these regions. The

I fraction of missed pulses (those not in the driven mode) is therefore p = (A - 12) / (I1 - 12). It is this

i fraction p which is the measure of the degree of coupling of the drive signal to the electron beam.

Figure 9 shows the results for priming power injection using one and two probes. The three

I experiments shown involve measurement of missed pulses (using the averaging method) as a function of

priming power. Priming power is injected three different ways and the results are shown as a function ofI
I
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the power into the LHCP wave in each case. The first experiment is single probe drive. The power into

the LHCP wave is determined from Eq. (15). The second experiment consists of driving two probes with

equal amplitudes and 900 out of phase. This configuration generates a pure LHCP wave. The last

experiment shown in the figure utilizes two probes with arbitrary input amplitudes and 900 out of

phase. The power into one probe is held constant while that into the second is varied. Equation (18) is

used in this case to determine the coupling to the LHCP wave.

The general result in all the experiments is that, as before, the degree of mode control decreases

with decreasing drive power. It is clear from Fig. 9 that regardless of how the amplitude of the drive

signal is varied, the degree of mode control depends predominantly upon the drive power in the LHCP

wave. From this, it can be inferred that the electromagnetic wave primarily couples to the gyrating

electron beam, through electron cyclotron absorption, when the wave is co-rotating with the electrons.

A further test of this conjecture is provided by an experiment in which the drive power is

constant but the phase between the two driven probes is varied. The drive power input to each probe is

approximately equal. The results of this investigation are shown in Fig. 10. The fraction of missed

pulses, p, varies approximately sinusiodally with the phase angle 0. This is to be expected if the

degree of mode control is simply proportional to the drive power input in a LHCP wave since the power

into the two circularly polarized waves in this experiment is [from Eq. (17)]

1
(P)=PN + -1P2 sin 0 (21)

(Figure 9 shows, however, that the relationship between mode control and LHCP drive power is not

quite linear.) Of more importance is the location of the points of maximum and minimum mode control.

The first minimum of Fig. 10 occurs at - 1300 (probe #3 leading probe #4 in Fig. 1). When the 320 line

length correction is taken into account the point of maximum mode control is found to be - 980. This is

quite close to the 900 interprobe phase shift required to produce a pure LHCP wave. The first maximum
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occurs at a corrected phase shift of 3020, reasonably close to the 2700 required for excitation of a pure

IRHCP wave.

In conclusion, given a fixed amount of drive power the most efficient means of coupling to the

electron beam is at an i-iterprobe phase shift such that a pure LHCP wave is launched into the cavity.

Alternatively, given a fixed phase shift between probes the amplitudes should be adjusted so that as

much drive power as possible is in the form of a LHCP wave. If the electron beam flow is in the

I direction of the magnetic field (as is usually the case) then optimal coupling should be obtained with

-- the RHCP wave.

Theory does not predict exactly zero coupling between the RHCP wave and the electron beam or

perfect coupling for the LHCP wave when the TE1 1 field pattern and the annular electron beam

geometry are taken into account. A more realistic prediction can be made by calculation of the beam-

I wave coupling coefficient as defined by Chu. 1 0 The interaction between the beam and the

electromagnetic wave is really only dependent on the electric field strength tangential to the electron

orbit. The beam power gain is proportional to the square of this electric field. Expanding the electric

field of a circular TEmn mode about an off-axis electron gyro-center yields 1 7

1

Eo = 1 k2 Cmi Jmn(kmzRo) [ Jo(km, rL) - J2(km7Z rL )] cos(Ot-o)II

I where r L is the electron Larmor radius. Here only the first spatial harmonic is considered. A thin ring

5 of electrons with guiding centers at a radius Ro is assumed. In the experiment the left-hand wave has

eigenvalues m=1, n=1 and the coupling coefficient is

I KLH = J0(k11Ro) [Jo(k11 rL) -J2(k11 r) ]1} 2  (2

The coefficient of the right-hand wave (m=-l, n=1) is

KRH = {J_2 (k- 1 Ro) [J_2(kl1 rL) - J0 (k-1 1 rL) 2 (23)

I
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Using Ro = .9 cm and rL = .23 cm (consistent with the beam a), the ratio of the coupling coefficients of

Eqs. (22) and (23) equals 55.2. As expected, the theoretical coupling of the co-rotating (LHCP) wave to

the beam is much stronger than the oppositely rotating wave. A rough experimental determination of

this ratio can be made from the data of Figs. 9 and 10. The missed pulse fraction can be eliminated by

transforming p in Fig. 10 to power coupled into the left-hand wave using Fig. 9. The curve corresponding

3 to pure left-hand wave excitation in Fig. 9 is used. This power is proportional to the actual power

coupled to fields on the electron orbit (Eq. (19) gives the predicted coupling constant). Figure 11 shows

the new plot relating phase between the probes to power actually coupled into the fields on the electron

orbit. The same sinusoidal shape as Fig. 10 is apparent here.

The power on orbit is produced from the separate contributions of the left- and right-hand

circularly polarized waves (as given by Eq. (18):

I Porbit - (PIN +  P1 P 2 sin 0) KL + (PIN - 4P P 2 sin 0) KR (24)

where KR and KL are proportional to the coupling coefficients of the right- and left-hand polarized

3 waves to the wave on the electron orbit. Varying the coefficients KR and KL to match the data in

Fig. 11 results in the solid line for a coupling coefficient ratio KR / KL of 55.2. The curve has been

I adjusted for the 100 systematic error apparent in Fig. 10. There is some difference in the predicted

extrema in the sinusoid but the overlap with the experimental points is fairly good. One major

uncertainty in this analysis is that the averaging method, upon which the measurement of the missed

3 pulse fraction is based, suffers its largest uncertainty in the regions of very weak and very strong mode

control. This means that the data points at the extrema in Fig. 11 are not very accurate. In addition,

I translating small or large missed pulse fractions into equivalent power via Fig. 9 is not precise. For

example, an uncertainty in the missed pulse fraction of 1 % at the maximum point in Fig. 10 causes

uncertainties in the coupling ratio of a factor of two since Fig. 9 gives normalized powers anywhere

between .5 and 1.5. It is found that variation of the coupling coefficient ratio by a factor of two in

I
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Eq. (18) still produces reasonable agreement with the experimental points in Fig. 11. Thus it can be said

only that the measurement of the relative coupling strength of the right- and left-hand waves is in

rough agreement with theory.

IV. DISCUSSION

A. Mode coupling

The rate equation coefficients anreduce, Pnreduce' and nVreduce are functions of three

parameters: cavity length L, axial wavenumber kz , and detuning between the field frequency and

cyclotron frequency A. If the axial field profile is assumed to be that of the unperturbed cavity mode

fq(z), then kz = qir/L and the parameters are L, q, and A. Here we apply these theoretical results to

the mode priming experiment.

Figure 12 shows the TE11 1 coefficients as a function of A for the experimental situation. The

subscript on the coefficients cX, P, and 7 indicates the q index of the axial mode (hence TEll indicated

by 1, TE1 12 by 2, etc.). The quality factors of all modes are 1200, the electron beam voltage is 19.98 kV,

beam current is .34 A, perpendicular-to-parallel velocity ratio is 1.4, beam guiding center radius is

.9 cm, and the cavity length is 60 cm. The cold cavity resonant frequencies of the lowest order axial

modes are 5.033, 5.052, and 5.081 GHz, respectively. The normalization frequency is 5.0 GHz. The

detuning parameter A1 in Fig. 12 is calculated using the cold cavity resonant frequency of the TE11 1

mode instead of the exact field frequency. The exact frequency is a function of the real parts of the

coefficients as well as the steady state power levels [Eq. (7a)]. This approximation is quite good and

can easily be improved by iteration. Figure 12 (a) shows the exact result for a 1 , including both the

"linear" and "quadratic" bunching terms.3 Because of this, the growth rate does not equal zero when

A, = 0. For all coefficients, it can be seen that the real and imaginary parts are 900 "out of phase";

hence the real parts go to zero near the points where the imaginary parts are at an extremum. This

implies that, to this degree of approximation, the effect of the electron beam on the field frequency is

minimized when A, is such that maximum growth or saturation occurs. The curves in Fig. 12 are

I1goto cus
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"universal" in the sense that the oscillator coefficients are related to A in the way shown even though

the field frequency and power might vary during an iterative calculation. Figure 12 (b) shows P1

calculated using only the quadratic bunching terms. From Eq. (Al) it can be shown that the imaginary

part of 3 must be an even function of A while the real part is odd in A. In both Figs. 12 (b) and (c) it can

3 be seen that the TEl11 mode can be either suppressed (Imf{l) > 0 or ImCY12} > 0) or excited (Im(l} < 0 or

Im{Y1 2} < 0) by the nonlinear effects. Near resonance (A = 0) the suppression dominates while for

I substantial detuning, A > .5, there is growth (Im({tl} > 0) and the nonlinear terms provide further

* excitation.

Figure 13 shows the coefficients calculated for the TE112 mode as a function of the detuning

parameter A2 (found in terms of the cold cavity TE112 resonant frequency). There is the same "phase"

relationship between the real and imaginary parts of the coefficients as seen in Fig. 12. The main

I difference is that in Fig. 13 there are two regimes of TE112 positive linear growth with corresponding

suppression by Im{ 2} and ImfY 21} on the edges of the excitation region closest to A2 = 0 and excitation on

the opposite ends of the growth regimes. Similar results are obtained for higher order axial modes.

For the purposes of comparison with experiment, the imaginary parts of the coefficients are

shown as functions of the magnetic field in Fig. 14 for the lowest three modes. The region of positive

I linear growth, Im(c 1) > 0, moves to lower magnetic field for higher order modes. This agrees

qualitatively with the experimental observations in Fig. 6. The width of the predicted excitation

regions are somewhat different than that experimentally observed. This is in large part due to the fact

3 that the coefficients are calculated using the cold cavity resonant frequencies rather than the actual

oscillation frequencies. All modes are strongly excited (Im[p) < 0 and ImM < 0) at the low magnetic

field edge of the first growth region (1.81 - 1.83 kG). Near the beam-wave resonance point (-1.86 kG for

TE111, -1.85 kG for TE112, -1.84 kG for TE113) the nonlinear terms become positive and suppress the

oscillation. At higher magnetic fields appear regions of Im((X} < 0 (no linear growth) yet Im{[P) and

3 Im{Y} > 0 (excitation). These are the hard excitation regions where the oscillator is not linearly

unstable but may oscillate if an external "kick" is supplied. Figure 14 shows that all modes have

3 regions where hard excitation may be provided via TE111 (Im{ P1) < 0 in 14 (a) in the interval 1.87- 1.89

beitenevl.718
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kG, ImCY21) < 0 in 14 (b) in the interval 1.855 - 1.875 kG, ImCY3 1) < 0 in 14 (c) in the interval 1.845 - 1.89

I- kG) or either of the other two modes in the appropriate regions. This indicates that mode priming

could also be effective in the hard excitation regions. There is a loss of frequency selectivity because of

the cross-excitation provided by the Ynv. The branches of TE11 2 and TE113 growth at high magnetic

field are generally strongly damped. Figures 14 (b) and (c) show that ImM > 0 and Im{[} > 0 for the

bulk of those regions of Im{OX) > 0 at magnetic fields above 1.86 kG. This is consistent with the

I experimental observation that at low beam currents the higher order modes appear primarily on the

low magnetic field side of the TE111 excitation region (see Fig. 6).

B. Fifth order quasi-linear theoryI
The mode priming experiment was performed at a magnetic field of - 1.838 kG. For this

I magnetic field many axial modes have positive linear growth rates. Table I shows the coefficients

corresponding to the experimental parameters. The high order TE113 and TE114 have larger self- and

cross-saturation coefficients than the low order modes. It is found experimentally that no modes other

than the TE11 1 and TE112 can be detected during the mode evolution. Injection of an external signal at

the expected frequency of a weak mode is found to generally enhance the mode amplitude. In this way

I even very weak modes can be detected. No evidence of such modes was found in this experiment. Thus it

can be inferred that the high order modes are strongly damped and do not play a role in the resulting

mode evolution.

Table I shows that all third order coefficients for the TE111 mode are negative. This implies

that all modes excite the TEfl1. Since there is no saturation of the TE111 to third order, it is clear that

I fifth order terms must be included. The terms which must be added to Eq. (7 b) are

I -IM{Pnllnv±PvP 
}

I
I
I
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For the case of two competing modes this correction adds three new terms to each rate equation. The

I new terms in the TEl 11 power rate equation are

Im P3 _ (2 I (i 2

1 112 P1 P2

Since the rate equations now involve second degree polynomials in P1 and P2, the critical points lie

along second degree curves (see curves A and B in Fig. 15) instead of the straight lines A and B shown in

Fig. 3. The curves still play the same role (trajectories have infinite or zero slope when they intersect

I one of the curves) and their intersection is on the separatrix.

The stability criteria for the single mode oscillation equilibria (P1 = 0, P2 = P at) and
(P1 = P sat, P2 = 0) shown in Fig. 15 are

I
Pst2 c,-Isaat2

a2 > -Im (& ) 2 () at) Im P 1 2}P - Im {122} (Psa < 0 and

2 P sat p sat 2
a1 > -Tm ( (, a2 -ImQ 2 11) (psat) <10 , (25)

respectively. The corresponding criterion for the instability of the intersection point is

All + A22 > 0 and A21 A12 > All A22 , (26)

where

An= - 2ira[n (psat) 2  pImt[nm)p~t. 3im[5nn (p sat ) 2 . 2 snnmP sat psat

I2
Im [8 nmm} (pSat) n * mI

p{_ sat 2
I n -n 2 Im {n} P sat p sat n

When the single mode equilibria are stable and the intersection equilibria is unstable, then the modes

are strongly coupled (assuming the linear growth rate of both modes is positive). Inus the criteria in

Eqs. (25) and (26) are those for strongly coupled modes in the fifth order theory.

U
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The fifth order coefficients are not calculated here but are estimated from the experimental

results. The self-saturation lm(nnn} is found from the experimental single-mode steady state power

p sat.

IU (psa ) pa
n °n

The experimental results give Im(8 111 } = 4.85 x 105 j -2 and Im{8 222) = 3.84 x 105j -2. The two cross-

3 coupling terms 5nnm and Snmm perform similar roles and, since neither is known, 8nnm is arbitrarily set

to zero. The 8nmm are chosen subject to the constraints of Eqs. (25) and (26) and are fit to the mode

priming experiment (data of Fig. 16). The values lm(122) = 1.613 x 106 J -2 and Im{82 11} = 3.0 x 105 J -2

3 are obtained in this way. The modal evolution using the set of coefficients through fifth order is shown

in Fig. 15. The curves A and B are ellipses in this case. The equation of the separatrix is found in the

3 way previously described.

3 C. Comparison of mode priming theory and experiment

3 Figure 16 shows the experimental results of priming a TEl I mode from a pure TE112 mode. The

drive signal polarization is adjusted for optimal mode control. As the drive signal becomes large

3 compared to the mean noise power level (.3 gW) the ECM approaches a pure TEl 1r mode. The solid line

shows the results obtained from the theory described in Sec. II D using the coefficients found in Sec. IV

3 B. The theory predicts the missed pulse fraction F that would be observed in a trial experiment

consisting of an infinite number of pulses. Since the actual experimental trial length is only 256 pulses,

a statistical uncertainty enters when comparing the experiment to the theory. However the standard

3 deviation in missed pulse fraction of a large number of trials of 256 pulses each can be found from the

binomial distribution:I
U
I
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_ /F(1 -F)
IF = 256

This standard deviation is indicated in Fig. 16 by the error bars. The uncertainty aF is small for low

drive power because there is a large missed pulse sampling in each trial. At high drive power the

I uncertainty is a large fraction of F, but is relatively small (compared to intermediate drive levels) since

there are few missed pulses detected (F is small).

After taking the statistical uncertainties into account, the theory agrees well with the

experimentally measured missed pulse fraction. This indicates that the qualitative explanation for

the mode priming phenomenon set forth here has validity. Further, this theory is adequate for

I prediction of the mode priming power required for a given degree of oscillator control in regions of

parameter space where the third order coefficients are positive. A further improvement can be

obtained by taking fifth order coefficients into account. This will expand the region of oscillator

parameter space over which the theory has appii-ability. This work is in progress.

3 V. Conclusion

I Injection priming by an external signal is shown to be a powerful and flexible means of mode

control in an overmoded electron cyclotron maser. The priming technique makes a much larger region of

ECM parameter space accessible to pure mode operation. The techrique is effective, to some degree, for

3 all strongly coupled axial modes which otherwise would suffer mode skipping or stable parasitic

oscillation. It is anticipated that this technique will also enable control of transverse modes as long as

I the filling factors of the different modes are similar.

A comparison is made between the experimental mode priming results and a quasi-linear theory

of mode competition. It is found that the theory gives a good qualitative picture of the mechanism by

which the injected signal selects modes in the strongly coupled case. It is found that for a broadly

U
U
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applicable quantitative prediction of mode control, terms higher than third order must be included in

the theory.

An indirect measurement is made of the relative coupling of the right- and left-hand circularly

polarized waves to the electron beam. It is found, as predicted from theory, that the wave with co-

rotating polarization is the dominant electromagnetic wave involved in the electron cyclotron resonance

mechanism. The experimental relative coupling strength agrees with the theoretical value to within

experimental uncertainties.

AcknowledgmentsI
The authors thank B. MacIntosh, S. Swiadek and F. Wood for construction of the electron

cyclotron maser tube. The help of W.M. Bollen in experimental setup and R.K. Parker in technical

support is gratefully acknowledged. Thanks also to K. Kreischer for suggesting the use of symbolic logic

manipulation.

This research was supported by the Office of Naval Research Grant and the Office of Naval

Technology. Computer support was provided by the National Science Foundation through the San Diego

Supercomputer Center.

Appendix: Rate Equation Coefficients

The coefficients of linear growth and self- and cross-saturation are!L

~ = - if W*() (fi [2 ugy)fjf u( )d"d"+u) ')-ju )vt)dj l
I
I
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~~if 2 (Y ~2 u )j z~ u'iU)dx"u()) Vz) (Al)

where W4-() = fi) eiX un(z) = fwn(2Y) d2 ,andVn(f) = jun(-i) di'.Iz
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TABLE I

Calculated rate equation coefficients corresponding to the experiment: beam voltage 19.98 kV,
beam current .34 A, a = 1.4, magnetic field of 1.838 kG.

I
TEl I  TE1 12  TEl13 TE114

cc, = .321 a 2  .476 (x3 = .349 CC4 = .31

I -.0048 2 =.0092 P3 = .017 4.018

712 -.0088 "21 = .0079 731 = .0195 741 = .027

"13 = -.0075 "23 =.0213 732 = .0324 "42 =.0388I 1 4  -.0008 724 .0208 73 4 =.037 43= .042

I
I
I
I

I
I
I
I
I
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FIGURE CAPIIONS

1: Configuration of the ECM with inset showing the midplane probe geometry.

2: (a) Magnetic field dependence of the Im{(cn } for various modes. Positive Im({O n ) means linear

growth. (b) Linear predictions of the oscillation frequency [from Re ( (Xn I I as a function of

magnetic field.

3: Mode evolution for two strongly coupled modes. Arrows indicate the direction of increasing time.

4: Mode priming of the ECM. (a) Free oscillation skipping between the TE1 1 1 (upper trace) and the

TE11 3 modes. (b) Pure TE1 l 1 mode primed operation (injected signal frequency equals TEl 11

frequency of 5.093 GHz). (c) Pure TE11 3 mode primed operation (injected signal frequency is 5.141

GHz). (d) Relative phase between the TE1 1 1 oscillation and priming signal corresponding to the

experiment shown in (b).

5: Temporal dependence of mode priming. The top trace in each shows detector measurement of rf

drive power while the bottom measures ECM output power. (a) No drive signal, mode skipping

between TEll I (lower) and TE1 1 3 (upper). (b) Drive signal applied too early in buildup. (c)

Optimal application time of drive pulse. (d) Drive pulse applied too late.

6: Enlargement of the region of pure TE 1rn mode oscillation due to a 20-W drive signal at the

oscillation frequency (shaded). Regions of displaced pure mode operation are indicated.

7: Minimum drive power required to prime a pure TE11 1 mode from pure TE11 2 as a function of

frequency separation between the drive signal and TEr 1n oscillation.

8: Geometry for (a) one-probe and (b) two-probe excitation.
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9: Mode control as a function of normalized power into the left-hand circularly polarized

electromagnetic wave. The three experiments involve driving one probe, two probes with equal

power and 90o phase lead on probe #1, and two probes at 900 with unequal power.

10: Degree of mode control as a function of phase shift between probes. Phase shifts corresponding to

pure right-hand (dot) and left-hand (dash) waves are indicated.

11: Effective power on the electron orbit as a function of relative phase between probes. The line

shows theory for a left- to right-hand coupling ratio of 55.2.

12: Universal curves of TE1 11 coefficients for different detuning parameters: (a) a1 , (b) P1 , (c) 12

with real part (dash) and imaginary part (solid).

13: Universal curves of TE1 1 2 coefficients for different detuning parameters: (a) Oa2 , (b) 02, (c) '2 1

with real part (dash) and imaginary part (solid).

14: Imaginary part of the coefficients for the three lowest order axial modes vs. magnetic field: (a)

TE11 1 , (b) TE11 2 , (c) TE1 1 3. The respective scale and dimensions are aX, (ns-1 ); 13 x 2 x 10-8 , ( -1)

Ix 2 x 10-8 ,(0-1 ).

15: Mode evolution for the experimental case including fifth order coupling terms.

16: Degree of mode control achieved with a given drive power and .3 giW noise power. Error bars show

the standard deviation in predicted control.
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